Automatic Design of Aircraft Arrival Routes with Limited Turning Angle

Tobias Andersson Granberg, Tatiana Polishchuk, Valentin Polishchuk, Christiane Schmidt
Introduction: Air transportation, SIDs + STARs

Grid-based IP formulation

Experimental Study: Arlanda Airport

Conclusion/Outlook
Air transportation:
Air transportation:

- Significant growth over the last decades
Air transportation:

• Significant growth over the last decades
• International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
Air transportation:
• Significant growth over the last decades
• International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
• Terminal Maneuvering Area (TMA), i.e., the area surrounding one or more neighboring aerodromes, is particularly affected by congestion
Air transportation:
• Significant growth over the last decades
• International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
• Terminal Maneuvering Area (TMA), i.e., the area surrounding one or more neighboring aerodromes, is particularly affected by congestion
• Design Arrival and Departure procedures ➔ higher throughput
Air transportation:
• Significant growth over the last decades
• International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
• Terminal Maneuvering Area (TMA), i.e., the area surrounding one or more neighboring aerodromes, is particularly affected by congestion
• Design Arrival and Departure procedures ➔ higher throughput
• In Air Traffic Management (ATM): humans-in-the-loop!
Air transportation:
• Significant growth over the last decades
• International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
• Terminal Maneuvering Area (TMA), i.e., the area surrounding one or more neighboring aerodromes, is particularly affected by congestion
• Design Arrival and Departure procedures ➔ higher throughput
• In Air Traffic Management (ATM): humans-in-the-loop!
 ◦ Planes constantly monitored/guided by air traffic controllers (ATCOs)
Air transportation:
- Significant growth over the last decades
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA), i.e., the area surrounding one or more neighboring aerodromes, is particularly affected by congestion
- Design Arrival and Departure procedures ➔ higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
 - Planes constantly monitored/guided by air traffic controllers (ATCOs)
 - Safe separation between aircraft
Air transportation:
• Significant growth over the last decades
• International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
• Terminal Maneuvering Area (TMA), i.e., the area surrounding one or more neighboring aerodromes, is particularly affected by congestion
• Design Arrival and Departure procedures ➔ higher throughput
• In Air Traffic Management (ATM): humans-in-the-loop!
 ○ Planes constantly monitored/guided by air traffic controllers (ATCOs)
 ○ Safe separation between aircraft
 ➔ Route design should:
Air transportation:

- Significant growth over the last decades
- International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
- Terminal Maneuvering Area (TMA), i.e., the area surrounding one or more neighboring aerodromes, is particularly affected by congestion
- Design Arrival and Departure procedures ➔ higher throughput
- In Air Traffic Management (ATM): humans-in-the-loop!
 - Planes constantly monitored/guided by air traffic controllers (ATCOs)
 - Safe separation between aircraft
- Route design should:
 - lead to traffic patterns with “low complexity”
Air transportation:
• Significant growth over the last decades
• International Air Transport Association (IATA) projected that the number of passengers will double to reach 7 billion/year by 2034
• Terminal Maneuvering Area (TMA), i.e., the area surrounding one or more neighboring aerodromes, is particularly affected by congestion
• Design Arrival and Departure procedures ➔ higher throughput
• In Air Traffic Management (ATM): humans-in-the-loop!
 ○ Planes constantly monitored/guided by air traffic controllers (ATCOs)
 ○ Safe separation between aircraft
 ➔ Route design should:
 ○ lead to traffic patterns with “low complexity”
 ○ avoid creating conflict points
At most airports predesigned standard routes for departure and arrival:
At most airports predesigned standard routes for departure and arrival:
Standard Instrument Departures (SIDs) and Standard Terminal Arrival Routes (STARs)
At most airports predesigned standard routes for departure and arrival:

Standard Instrument Departures (SIDs) and **Standard Terminal Arrival Routes (STARs)**

STAR
Stockholm, RWY 01L/01R

SID
Stockholm, RWY 01L
SIDs/STARs:
SIDs/STARs:

- Designed manually
SIDs/STARs:

• Designed manually
• No optimal routes for any specific criteria
SIDs/STARs:

- Designed manually
- No optimal routes for any specific criteria
- Here: mathematical programming framework for finding optimal STAR merge trees
Optimal STAR merge trees

Input:
Optimal STAR merge trees

Input:
locations of the entry points to the TMA
Optimal STAR merge trees

Input:
locations of the entry points to the TMA
location and direction of the airport runway
Input: locations of the entry points to the TMA
location and direction of the airport runway

Output:
Optimal STAR merge trees

Input:
locations of the entry points to the TMA
location and direction of the airport runway

Output:
arrival tree that merges traffic from the entries to the runway,
Optimal STAR merge trees

Input:
locations of the entry points to the TMA
location and direction of the airport runway

Output:
arrival tree that merges traffic from the entries to the runway,
i.e., a tree that has the entries as leaves and the runway as the root
Optimal STAR merge trees

Input:
locations of the entry points to the TMA
location and direction of the airport runway

Output:
arrival tree that merges traffic from the entries to the runway,
i.e., a tree that has the entries as leaves and the runway as the root
(arborescence oriented differently than usual)
Optimal STAR merge trees

Input:
locations of the entry points to the TMA
location and direction of the airport runway

Output:
arrival tree that merges traffic from the entries to the runway,
i.e., a tree that has the entries as leaves and the runway as the root
(arborescence oriented differently than usual)

1. **No more than two routes merge at a point:** in-degree ≤ 2
Optimal STAR merge trees

Input:
locations of the entry points to the TMA
location and direction of the airport runway

Output:
arrival tree that merges traffic from the entries to the runway, i.e., a tree that has the entries as leaves and the runway as the root (arborescence oriented differently than usual)

1. **No more than two routes merge at a point:** in-degree \(\leq 2 \)
2. **Merge point separation:** distance threshold \(L \)
Input:
locations of the entry points to the TMA
location and direction of the airport runway

Output:
arrival tree that merges traffic from the entries to the runway,
i.e., a tree that has the entries as leaves and the runway as the root
(arborescence oriented differently than usual)

1. **No more than two routes merge at a point:** in-degree ≤ 2
2. **Merge point separation:** distance threshold L
3. **No sharp turns:** angle threshold α, minimum edge length L
Optimal STAR merge trees

Input:
locations of the entry points to the TMA
location and direction of the airport runway

Output:
arrival tree that merges traffic from the entries to the runway,
i.e., a tree that has the entries as leaves and the runway as the root
(arborescence oriented differently than usual)

1. **No more than two routes merge at a point:** in-degree ≤ 2
2. **Merge point separation:** distance threshold L
3. **No sharp turns:** angle threshold α, minimum edge length L
4. **Obstacle avoidance**
Optimal STAR merge trees

Input:
locations of the entry points to the TMA
location and direction of the airport runway

Output:
arrival tree that merges traffic from the entries to the runway,
i.e., a tree that has the entries as leaves and the runway as the root
(arborescence oriented differently than usual)

1. **No more than two routes merge at a point:** in-degree ≤ 2
2. **Merge point separation:** distance threshold L
3. **No sharp turns:** angle threshold α, minimum edge length L
4. **Obstacle avoidance**
5. **STAR–SID separation:**
Optimal STAR merge trees

Input:
locations of the entry points to the TMA
location and direction of the airport runway

Output:
arrival tree that merges traffic from the entries to the runway,
i.e., a tree that has the entries as leaves and the runway as the root
(arborescence oriented differently than usual)
1. **No more than two routes merge at a point:** in-degree ≤ 2
2. **Merge point separation:** distance threshold L
3. **No sharp turns:** angle threshold α, minimum edge length L
4. **Obstacle avoidance**
5. **STAR–SID separation:**
 STAR–SID crossings far from the runway,
Optimal STAR merge trees

Input:
locations of the entry points to the TMA
location and direction of the airport runway

Output:
arrival tree that merges traffic from the entries to the runway,
i.e., a tree that has the entries as leaves and the runway as the root
(arborescence oriented differently than usual)

1. **No more than two routes merge at a point:** in-degree ≤ 2
2. **Merge point separation:** distance threshold L
3. **No sharp turns:** angle threshold α, minimum edge length L
4. **Obstacle avoidance**
5. **STAR–SID separation:**
 STAR–SID crossings far from the runway,
 where arriving and departing planes sufficiently separated
 vertically (difference of descend and climb slopes)
Objective function:
Objective function:
- Short flight routes for aircraft
Objective function:
- Short flight routes for aircraft
- Minimize total length of the routes
Objective function:

- Short flight routes for aircraft
- Minimize total length of the routes
- STAR tree should "occupy little space"
Objective function:
- Short flight routes for aircraft
 ➔ Minimize total length of the routes
- STAR tree should "occupy little space"
 ➔ Minimize total length of the edges
Objective function:
- Short flight routes for aircraft
 ➡ Minimize total length of the routes
- STAR tree should "occupy little space"
 ➡ Minimize total length of the edges
Objective function:
- Short flight routes for aircraft
- Minimize total length of the routes
- STAR tree should "occupy little space"
- Minimize total length of the edges
Objective function:
- Short flight routes for aircraft
 ➡ Minimize total length of the routes
- STAR tree should "occupy little space"
 ➡ Minimize total length of the edges

Pareto frontier of multicriteria optimization problem:
set of Pareto optimal solutions (cannot be improved with respect to one of the objectives without sacrificing on the other)
Grid-based IP formulation
Grid-based IP formulation
Grid-based IP formulation

- Square grid in the TMA
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid
- \(P \): set of (snapped) entry points
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid

- P: set of (snapped) entry points
- r: runway
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid

- \(P \): set of (snapped) entry points
- \(r \): runway

- Side of the grid pixel: \(L \) (merge point separation)
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid

- P: set of (snapped) entry points
- r: runway

- Side of the grid pixel: L (merge point separation)

- G = (V,E):
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid

- P: set of (snapped) entry points
- r: runway

- Side of the grid pixel: L (merge point separation)

- G = (V,E):
 - Every grid node connected to its 8 neighbors
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid

- P: set of (snapped) entry points
- r: runway

- Side of the grid pixel: L \(\Rightarrow \) merge point separation

- \(G = (V,E) \):
 - Every grid node connected to its 8 neighbors
 - \(G \) is bi-directed
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid

- P: set of (snapped) entry points
- r: runway

- Side of the grid pixel: L (merge point separation)

- G = (V,E):
 - Every grid node connected to its 8 neighbors
 - G is bi-directed
 - Only exceptions:
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid

- \(P \): set of (snapped) entry points
- \(r \): runway

- Side of the grid pixel: \(L \) (merge point separation)

- \(G = (V,E) \):
 - Every grid node connected to its 8 neighbors
 - \(G \) is bi-directed
 - Only exceptions:
 - Entry points (no incoming edges)
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid

- P: set of (snapped) entry points
- r: runway

- Side of the grid pixel: L (merge point separation)

- $G = (V,E)$:
 - Every grid node connected to its 8 neighbors
 - G is bi-directed
 - Only exceptions:
 - Entry points (no incoming edges)
 - r (no outgoing edges)
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid

- \(P \): set of (snapped) entry points
- \(r \): runway

- Side of the grid pixel: \(L \) (⇒ merge point separation)

- \(G = (V,E) \):
 - Every grid node connected to its 8 neighbors
 - \(G \) is bi-directed
 - Only exceptions:
 - Entry points (no incoming edges)
 - \(r \) (no outgoing edges)

- \(l_{i,j} \) length of an edge \((i, j) \)
Grid-based IP formulation

- Square grid in the TMA
- Snap locations of the entry points and the runway onto the grid

- P: set of (snapped) entry points
- r: runway

- Side of the grid pixel: L (merge point separation)

- $G = (V,E)$:
 - Every grid node connected to its 8 neighbors
 - G is bi-directed
 - Only exceptions:
 - Entry points (no incoming edges)
 - r (no outgoing edges)

- $l_{i,j}$ length of an edge (i, j)

- IP formulation is based on flow IP formulation for Steiner trees (Min Cost Flow Steiner arborescence)
Grid-based IP formulation
Grid-based IP formulation

\(x_e \) decision variables: edge \(e \) participates in the STAR.
Grid-based IP formulation

\[x_e \text{ decision variables: edge } e \text{ participates in the STAR.} \]
\[f_e \text{ flow variables: gives the flow on edge } e = (i, j) \text{ (i.e., from } i \text{ to } j \text{).} \]
Grid-based IP formulation

- x_e: decision variables: edge e participates in the STAR.
- f_e: flow variables: gives the flow on edge $e = (i, j)$ (i.e., from i to j)

$$
\sum_{k: (k,i) \in E} f_{ki} - \sum_{j: (i,j) \in E} f_{ij} = \begin{cases}
|\mathcal{P}| & i = r \\
-1 & i \in \mathcal{P} \\
0 & i \in V \setminus \{\mathcal{P} \cup r\}
\end{cases}
$$

- $x_e \geq \frac{f_e}{N}$ for all $e \in E$
- $f_e \geq 0$ for all $e \in E$
- $x_e \in \{0, 1\}$ for all $e \in E$
Objective functions:

\[
\begin{align*}
\text{min } & \sum_{e \in E} \ell_e f_e \\
\text{min } & \sum_{e \in E} \ell_e x_e
\end{align*}
\]
Objective functions:

\[
\begin{align*}
\text{min } & \sum_{e \in E} \ell_e f_e \\
\text{min } & \sum_{e \in E} \ell_e x_e
\end{align*}
\]
Objective functions:

\[
\min \sum_{e \in E} \ell_e f_e \quad \text{(1)}
\]

\[
\min \sum_{e \in E} \ell_e x_e \quad \text{paths length}
\]

\[
\min \sum_{e \in E} \ell_e x_e \quad \text{tree weight}
\]

\[
\min \sum_{e \in E} \ell_e x_e \quad \text{(2)}
\]
Grid-based IP formulation

Degree constraints:

$$\sum_{k:(k,i)\in E} x_{ki} \leq 2 \quad \forall i \in V \setminus \{P \cup r\}$$

$$\sum_{j:(i,j)\in E} x_{ij} \leq 1 \quad \forall i \in V \setminus \{P \cup r\}$$

$$\sum_{k:(k,r)\in E} x_{kr} = 1$$

$$\sum_{j:(r,j)\in E} x_{rj} \leq 0$$

$$\sum_{k:(k,i)\in E} x_{ki} \leq 0 \quad \forall i \in P$$

$$\sum_{j:(i,j)\in E} x_{ij} = 1 \quad \forall i \in P$$
Turn angle constraints:
Grid-based IP formulation

Turn angle constraints:

\[A_e \]
Grid-based IP formulation

Turn angle constraints:

\[a_e = |A_e| \]
Grid-based IP formulation

Turn angle constraints:

\[a_e = |A_e| \]

\[a_e x_e + \sum_{f \in A_e} x_f \leq a_e \quad \forall e \in E \]
SID constraints:
We disallow STAR edges to intersect SID edges within distance d from the runway.
Experimental Study: Arlanda Airport
Experimental Study: Arlanda Airport

Stockholm TMA:
Stockholm TMA:
- Arlanda’s runway 19L
Experimental Study: Arlanda Airport

Stockholm TMA:
- Arlanda’s runway 19L
- Four main entry points: NILUG, XILAN, HMR, and ARS
Experimental Study: Arlanda Airport

Stockholm TMA:
- Arlanda’s runway 19L
- Four main entry points: NILUG, XILAN, HMR, and ARS
- Square grids of size 14x20 and 25x30
Stockholm TMA:
- Arlanda’s runway 19L
- Four main entry points: NILUG, XILAN, HMR, and ARS
- Square grids of size 14x20 and 25x30
- Solve IP with
Experimental Study: Arlanda Airport

Stockholm TMA:
- Arlanda’s runway 19L
- Four main entry points: NILUG, XILAN, HMR, and ARS
- Square grids of size 14x20 and 25x30
- Solve IP with
 - Both objective functions
Stockholm TMA:
- Arlanda’s runway 19L
- Four main entry points: NILUG, XILAN, HMR, and ARS
- Square grids of size 14x20 and 25x30
- Solve IP with
 - Both objective functions
 - Degree constraints
Stockholm TMA:
- Arlanda’s runway 19L
- Four main entry points: NILUG, XILAN, HMR, and ARS
- Square grids of size 14x20 and 25x30
- Solve IP with
 - Both objective functions
 - Degree constraints
 - Turn Angle constraints
Stockholm TMA:
- Arlanda’s runway 19L
- Four main entry points: NILUG, XILAN, HMR, and ARS
- Square grids of size 14x20 and 25x30
- Solve IP with
 - Both objective functions
 - Degree constraints
 - Turn Angle constraints
- 8 grid directions
Experimental Study: Arlanda Airport

Stockholm TMA:
- Arlanda’s runway 19L
- Four main entry points: NILUG, XILAN, HMR, and ARS
- Square grids of size 14x20 and 25x30
- Solve IP with
 - Both objective functions
 - Degree constraints
 - Turn Angle constraints
- 8 grid directions
- Postprocessing for smoother paths:
Stockholm TMA:
- Arlanda’s runway 19L
- Four main entry points: NILUG, XILAN, HMR, and ARS
- Square grids of size 14x20 and 25x30
- Solve IP with
 - Both objective functions
 - Degree constraints
 - Turn Angle constraints
- 8 grid directions
- Postprocessing for smoother paths: shortcuts by removing vertices as long as the turn angle constraint is not violated
Experimental Study: Arlanda Airport

Stockholm TMA:
- Arlanda’s runway 19L
- Four main entry points: NILUG, XILAN, HMR, and ARS
- Square grids of size 14x20 and 25x30
- Solve IP with
 - Both objective functions
 - Degree constraints
 - Turn Angle constraints
- 8 grid directions
- Postprocessing for smoother paths: shortcuts by removing vertices as long as the turn angle constraint is not violated
Experimental Study: Arlanda Airport
Experimental Study: Arlanda Airport

Pareto frontier:
Experimental Study: Arlanda Airport

Pareto frontier:

Pareto optimal solutions:
Obstacle avoidance:
Obstacle avoidance:
Obstacle avoidance:
Obstacle avoidance:
Increased Number of Entry Points:
Increased Number of Entry Points:

paths length
Increased Number of Entry Points:

paths length
Experimental Study: Arlanda Airport

Increased Number of Entry Points:

paths length
Increased Number of Entry Points:

paths length
Experimental Study: Arlanda Airport

Increased Number of Entry Points:

paths length

Diagram:

- Paths length
- Tree weight
Increased Number of Entry Points:

paths length

tree weight
Experimental Study: Arlanda Airport

Increased Number of Entry Points:

paths length

tree weight
Experimental Study: Arlanda Airport

Increased Number of Entry Points:

- paths length
- tree weight
Experimental Study: Arlanda Airport

Increased Number of Entry Points:

paths length

serve the airlines’ request for short trajectories best
Increased Number of Entry Points:

serve the airlines’ request for short trajectories best

quite dense network of routes ➔
Increased Number of Entry Points:

paths length

serve the airlines’ request for short trajectories best

quite dense network of routes ➔ hard to control the traffic
Increased Number of Entry Points:

- paths length
- tree weight

serve the airlines’ request for short trajectories best

quite dense network of routes ➔ hard to control the traffic

most merge points are located close to TMA boundary
Experimental Study: Arlanda Airport

Increased Number of Entry Points:

- Paths length
- Tree weight

Serve the airlines’ request for short trajectories best

Quite dense network of routes

Hard to control the traffic

Most merge points are located close to TMA boundary

Helpful to use linear combination of these two functions
Experimental Study: Arlanda Airport

Increased Number of Entry Points:

Paths length

Tree weight

➜ helpful to use linear combination of these two functions
Increased Number of Entry Points:

- **Paths Length**
- **Tree Weight**

Solutions for large number of entry points could be used to suggest the number and location of entry points for a design from scratch.

➔ helpful to use linear combination of these two functions
Experimental Study: Arlanda Airport

Increased Number of Entry Points:

Paths length

Tree weight

Solutions for large number of entry points could be used to suggest the number and location of entry points for a design from scratch.

Helpful to use linear combination of these two functions

2 entry points
Increased Number of Entry Points:

- **Paths Length**

- **Tree Weight**

Solutions for large number of entry points could be used to suggest the number and location of entry points for a design from scratch.

 Helpful to use linear combination of these two functions.
Experimental Study: Arlanda Airport

SID constraints:

Each tree:
within approximately
2 CPU hours
(105 B&B nodes)
SID constraints:
SID constraints:
Experimental Study: Arlanda Airport

SID constraints:

![Graph showing SID constraints with paths length and radius on a grid.](image)
Conclusion/Outlook
Proof of concept for our grid-based IP approach for finding aircraft arrival routes with limited turning angle
Proof of concept for our grid-based IP approach for finding aircraft arrival routes with limited turning angle

Easily integrates constraints from the departure routes
Proof of concept for our grid-based IP approach for finding aircraft arrival routes with limited turning angle

Easily integrates constraints from the departure routes

Static obstacles, e.g., no-fly zones, can be added
Proof of concept for our grid-based IP approach for finding aircraft arrival routes with limited turning angle

Easily integrates constraints from the departure routes

Static obstacles, e.g., no-fly zones, can be added

Might choose to minimize weighted version: minimize the sum of trajectory lengths flown by all arriving aircraft (easily integrated by changing right-hand side of first equation)
Proof of concept for our grid-based IP approach for finding aircraft arrival routes with limited turning angle

Easily integrates constraints from the departure routes

Static obstacles, e.g., no-fly zones, can be added

 Might choose to minimize weighted version: minimize the sum of trajectory lengths flown by all arriving aircraft (easily integrated by changing right-hand side of first equation)

Outlook:
Proof of concept for our grid-based IP approach for finding aircraft arrival routes with limited turning angle

Easily integrates constraints from the departure routes

Static obstacles, e.g., no-fly zones, can be added

Might choose to minimize weighted version: minimize the sum of trajectory lengths flown by all arriving aircraft (easily integrated by changing right-hand side of first equation)

Outlook:

Simultaneous design of both SIDs and STARs
Proof of concept for our grid-based IP approach for finding aircraft arrival routes with limited turning angle

Easily integrates constraints from the departure routes

Static obstacles, e.g., no-fly zones, can be added

Might choose to minimize weighted version: minimize the sum of trajectory lengths flown by all arriving aircraft (easily integrated by changing right-hand side of first equation)

Outlook:

Simultaneous design of both SIDs and STARs

3D routes